
© 2015 IBM Corporation

Blockchain Scalability

Marko Vukolić, IBM Research - Zurich

June 20, 2018

© 2015 IBM Corporation

What is a Blockchain?

• A chain (sequence, typically a hash chain) of blocks of transactions

- Each block consists of a number of (ordered) transactions

- Blockchain establishes total order of transactions

2

#234 #235 #236…#1
#0

Genesis
block

Node A Node E

Node B Node D

Node C

Node F

Ledger

Ledger

Ledger

Ledger

Ledger

Ledger

Consensus
protocol
ensures ledger
replicas are
identical*

datastructure

Network of
untrusted nodes

© 2015 IBM Corporation

Blockchain evolution (2009-present)

3

2009
Bitcoin Blockchain 1.0

• A hard-coded cryptocurrency application
w. limited stack-based scripting language

• Proof-of-work-consensus
• Native cryptocurrency (BTC)
• Permissionless blockchain system

2014
Ethereum

Blockchain 2.0

• Distributed applications (smart contracts)
in a domain-specific language (Solidity)

• Proof-of-work-consensus (transition to Proof of Stake?)
• Native cryptocurrency (ETH)
• Permissionless blockchain system

2017
Hyperledger

Fabric
Blockchain 3.0

• Distributed applications (chaincodes)
in different general-purpose languages
(e.g., golang, Java, Node)

• Modular/pluggable consensus
• No native cryptocurrency
• Multiple instances/deployments
• Permissioned blockchain system

© 2015 IBM Corporation

Main scalability bottlenecks

 Consensus/transaction ordering performance

 Sequential smart contract execution

 In the rest of the talk we will see challenges and how to address both

4

© 2015 IBM Corporation

Growing the chain

• How does the chain grow?

Most popular blockchain technique (used also in Bitcoin):

Proof-of-Work (PoW)

5

© 2015 IBM Corporation

Growing Proof-of-Work (PoW)-based Blockchain

 Block “mining”:

─ Every participant (“miner”) tries to find nonces

─ such that the hash of the block h is lower than a 256-bit target

 Bitcoin

─ Target dynamically adjusted every 2016 blocks

─ 1 block generated roughly every 10 minutes

─ This currently requires roughly 280 expected hashes per block

6

#234… #235 #236

A =hash of block #236
B = Root hash of

Merkle tree of tx
hashes

C = nonce 1
D = nonce 2

Block #237

Transactions
(payload)

h = hash of Block #237 = SHA256(A||B||C||D)

© 2015 IBM Corporation

Forks

 If multiple miners mine the next block, consensus (on the next block)

might be broken

PoW acts as an unreliable concurrency control mechanism – it may fail in this

 Hence, Bitcoin miners adopt a conflict resolution policy

─ They will temporarily store both 237A and 237B

─ A fork being extended longer (in fact with more work) eventually prevails

7

#234… #235 #236

#237
A

#237
B

?

© 2015 IBM Corporation

Example (longest/most difficult chain wins)

8

#234… #235 #236

#237
A

#237
B

#238
B

#239
B

© 2015 IBM Corporation9

#234… #235 #236

#237
A

#237
B

#238
B

#239
B

Orphaned block

Example (longest/most difficult chain wins)

© 2015 IBM Corporation

Implications and the performance issues

PoW way of extending the ledger heavily and negatively impacts

system scalability and overall throughput

 Bitcoin: With 1 block every 10 minutes and fixed block size of 1 MB
─ Peak throughput: only 6-7 tx/sec

─ Latency (of 6 block confirmations): about 1h

─ Enormous energy consumption!

 https://digiconomist.net/bitcoin-energy-consumption

─ 71 TWh/year  8GW of power

─ More than Switzerland, 0.32% of world electricity consumption

─ 987 kWh per transaction!

─ Average US household in 2016  897 kWh per month

10

https://digiconomist.net/bitcoin-energy-consumption

© 2015 IBM Corporation

Better performance by tuning PoW parameters?

 Limited benefits, potentially weaker security

─ shorter block generation times (increasing block frequency)?

─ larger blocks?

─ Different conflict resolution rules?

 From Gervais et al. CCS’16 paper https://eprint.iacr.org/2016/555

 Bitcoin 6 blocks (1hour) ~ Ethereum 37 blocks (9-10 minutes)

 PoW blockchains can attain up to 60 tps with Bitcoin-like probability of

stale blocks

11

https://eprint.iacr.org/2016/555

© 2015 IBM Corporation

Boosting consensus: Enter Proof of Stake (PoS)

 PoS usually sits on top of PoW tree datastructure

 Allows nodes with more stake/weight to form blocks more often

effectively lowering the difficulty

 “Nothing at stake” problem?

 Centralization?

12

© 2015 IBM Corporation

PoS “Nothing-at-Stake” Forks

 PoS breaks ties selecting forks (branches) with more stake on them

 Very susceptible to ”double-spend” attacks in absence of penalties

 Example with 3% of stake double spending

13

#234… #235 #236

#237
A

#237
B

49% stake

49% stake

2% stake “idle”51% stake
0% stake “idle”

52% stake

3% stake malicious

© 2015 IBM Corporation

Casper – Friendly Finality Gadget

 Buterin/Griffith

─ https://arxiv.org/abs/1710.09437

 Leverages BFT techniques to limit the effects of forks and to address

nothing at stake problem

─ Byzantine Fault Tolerant (BFT) agreement to settle on a single block and

penalize equivocating nodes

 Relies on node synchrony as well

 Announced as early as in 2015, still being figured out…

Wait but what is this BFT?
14

https://arxiv.org/abs/1710.09437

© 2015 IBM Corporation

Enter State machine replication (SMR)

 [Lamport 78], countless follow-up papers

 Classical Distributed Computing problem

─ An illusion of a centralized system that never fails

─ Despite machine faults and (temporary) network partitions

What machine faults?

 Crash faults (CFT): A machine simply stops execution and halts

─ Paxos, RAFT, Zookeeper AB,…

 Non-crash (a.k.a. Byzantine) faults (BFT)

─ A model that blockchains adopt

#234… #235 #236

#237
A

#237
B

#238
B

#239
B

No forks!

© 2015 IBM Corporation

BFT Consensus (example of PBFT [TOCS2002], implemented in Hyperledger

Fabric v0.6)

16

Node A (leader)

Node B

Node C

Node D

Tx1

Commit the block to the
local copy of blockchain
(if 2f+1 out of 3f+1 agree, 2/3rd majority)

Many other things burden the implementation (it is not simple as it might look)
• Leader election
• State transfer (new, slow Party)
• Reconfiguration
In this example, all nodes have equal weights, the protocol can simply be
adapted to weights/stakes

Tx2

Tx3

Tx4

Seq #24
View no

Validate the block
… #21 #22 #23 Tx1

Tx2

Tx3

Tx4

Seq #24
View no

© 2015 IBM Corporation

BFT in Blockchains

 BFT is known as a technology that matters for permissioned

blockchains

 But with PoS BFT importance extends to permissionless blockchains

as well

 Much better performance (throughput/latency) compared to PoW

─ Drawback: more intensive on network communication

17

© 2015 IBM Corporation

PoW vs. BFT for Blockchain (simplified overview)

18

Proof of Work (Bitcoin, Ethereum,...) BFT state machine replication (Ripple, Stellar, Fabric,…)

Membership

type

Permisionless Permissioned

User IDs

(Sybil attack)

Decentralized, Anonymous

(Decentralized protection by PoW

compute/hash power)

Centralized, all Nodes know all other Nodes (Centralized

identity management or stake protect against Sybil attacks)

Scalability

(no. of Nodes)

Excellent, >100k Nodes Verified up to few tens (or so) Nodes

Can scale to 100 nodes with certain performance

degradation

(scalability limits not well explored)

Scalability

(no. of Clients)

Excellent Excellent

Latency Poor, up to 1h (Bitcoin)

From 9-10 mins (Ethereum)

Depends on the implementation/deployment (order of ms)

Peak

Throughput

from 7 tx/sec (Bitcoin) >10k tx/sec with existing implem. in software [<20…100

nodes]

Power

efficiency

>8 GW (Bitcoin) Good (commodity hardware)

Temporary

forks in

blockchain

Possible (leads to double-spending

attacks)

Not possible

Open research problem:
Given the use case, network, no. of nodes

What is the most suitable and scalable Blockchain technology/protocol?

© 2015 IBM Corporation19

Marko Vukolić.The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT Replication
Proceedings of the 2015 International workshop on open problems in network security (iNetSec 2015).

© 2015 IBM Corporation

Optimistic protocols (a bit of our own work)

 Abortable state machine replication [Aublin et al, TOCS 2015]

─ Can run O(n) BFT protocol of a basically arbitrary communication pattern

including (a very load-balanced one) in the optimistic case

─ Backed by any BFT protocol (e.g., PBFT) to cover the worst case without

redesigning the entire protocol/system

20

Node A (leader)

Node B

Node C

Node D

Tx1

Tx2

Tx3

Tx4

seq no
View no

Protocol
reconfiguration

© 2015 IBM Corporation

Revisiting the assumptions (still our own work)

 XFT [Liu et al., OSDI 2016] http://arxiv.org/abs/1502.05831

 BFT assumes powerful adversary

─ controlling the network among correct nodes

─ and f Byzantine nodes out of 3f+1 nodes

─ Simultaneous control over network and Byzantine nodes may be difficult to

pull out in the blockchain setting

 XFT: at most f of partitioned nodes and Byzantine nodes at any time

─ Have the cost of CFT consensus without trusted hardware

 XPaxos as the primer for such XFT protocols

21

SMR model CFT XFT BFT

Number of Nodes 2f+1 2f+1 3f+1

Tolerating Byzantine Nodes no yes yes

Performance Good Practically as good as CFT Poor (compared to CFT)

http://arxiv.org/abs/1502.05831

© 2015 IBM Corporation

Putting SMR consensus in modern hardware

 Has been shown to dramatically increase performance of consensus

─ But so far with CFT only

 RDMA-based protocols

─ FaRM [Dragojevic et al, NSDI’14],

─ DARE [Poke/Hoeffler, HPDC’15]

 FPGAs [Istvan et al., NSDI’16]

─ 3 node Zookeper atomic broadcast (ZAB) up to 2.5 million tps*

*CFT, excluding crypto overhead and application execution

Node scalability is still an unknown and BFT still to be implemented

22

© 2015 IBM Corporation

Main scalability bottlenecks

 Consensus/transaction ordering performance

 Sequential smart contract execution

23

© 2015 IBM Corporation

Introducing smart contracts/chaincode

Modern crypto ledgers (e.g., Ethereum, Hyperledger)

aim at supporting “smart contracts” or “chaincodes”

A smart contract is an event driven program, with state, which runs on a

replicated, shared ledger and which can take custody over assets on that

ledger. [Swanson2015]

“Smart contract”  (replicated) state machine

24

© 2015 IBM Corporation

PoW with smart-contracts

• PoW Consensus

• Block “mining”

• Block #237 propagation to the network

(gossip)

• Block Validation / Smart Contract Execution (every miner)

• Executing transactions in the payload

• Verifying hash of Block #237 < DIFFICULTY

25

#234… #235 #236

A =hash of block #236
B = Root hash of

Merkle tree of tx
hashes

C = nonce

Block #237

Transactions
(payload)

• Pre-executing transactions in the payload
• Finding nonces such that

h = hash of Block #237 = SHA256(A||B||C) < DIFFICULTY

#234… #235 #236

A =hash of block #236
B = Root hash of

Merkle tree of tx
hashes

C = nonce

Block #237

Transactions
(payload)

Miner of block #237

© 2015 IBM Corporation

BFT Consensus (example of PBFT [TOCS2002], implemented in Hyperledger

Fabric v0.6)

26

Node A (leader)

Node B

Node C

Node D

Tx1

Commit the block to the
local copy of blockchain
(if 2f+1 out of 3f+1 agree, 2/3rd majority)

Execute transactions sequentially

Tx2

Tx3

Tx4

Seq #24
View no

Validate the block
… #21 #22 #23 Tx1

Tx2

Tx3

Tx4

Seq #24
View no

© 2015 IBM Corporation

Almost all blockchains follow order-execute
architecture

 Order transactions using (PoW/BFT) consensus

 Execute transactions sequentially at each node (miner)

This approach works only when state-machine

and transactions are deterministic

27

© 2015 IBM Corporation

Order-Execute main design challenges

 Enforcing determinism

─ What happens if you code smart-contracts in general purpose programming

language (Go, Java)?

• Potential non-determinism!!!

─ Ethereum

• Solidity domain specific language

• Compiled to Ethereum VM stack-based bytecode

 Infinite loop “application”? Long executing application?

─ Sequential execution

─ Gas, paying for every step of execution (computation)

─ Systemic dependency on native cryptocurrency (Ether)

28

© 2015 IBM Corporation

Scaling blockchain execution through parallelization

 BlockDAG [Lewenberger et al., FC2015]

 Parallel execution in BFT consensus [Kapritsos et al.,OSDI2012]

─ A variant of which is implemented in Hyperledger Fabric v1 (as we will see)

 And classical database sharding/partitioning

─ Implemented in Hyperledger Fabric through concept of channels

─ Targeted by Ethereum and other blockchains
29

#234… #235 #236

#237
A

#237
B

#238
B

#239
B

#238
C

#239
C

#240
C

#238
A

#239
A

#241

© 2015 IBM Corporation

Hyperledger Fabric v1

 Androulaki et al. Hyperledger Fabric: a distributed operating system

for permissioned blockchains, Eurosys 2018

─ https://dl.acm.org/citation.cfm?id=3190538

─ Open source project (Apache 2.0), with strong push from IBM

 Main features

─ Parallel execution

─ Can code smart-contracts in general-purpose languages

─ Modular consensus (decoupled from execution, plug in the best available)

─ No native cryptocurrency (can have one as yet another application)

 Current performance with Fabric v1.1 Bitcoin-like workload

(Fabcoin)

─ 3500 tps with 100 nodes on WANs with commodity cloud hardware

─ Simple optimizations pending to get to 10000 tps
30

https://dl.acm.org/citation.cfm?id=3190538

© 2015 IBM Corporation

Existing blockchains’ architecture

input tx tx against smart contracts

Hyperledger Fabric v1 architecture

EXECUTE  ORDER  VALIDATE

Hyperledger Fabric v1 architecture in one slide

31

Application consists of two components:
1) Chaincode (execution code)
2) Endorsement policy (validation code)

© 2015 IBM Corporation

Hyperledger Fabric v1 Transaction flow

client (C)
endorsing
peer (EP1)

endorsing
peer (EP2)

endorsing
peer (EP3)

O
rd

erin
g service (co

n
sen

su
s)

orderers

Simulate/Execute tx
Sign TX-ENDORSED

Collect endorsement
(“sufficient” no. of

TX-ENDORSED Msgs)

1

2

4

3

1 <PROPOSE, clientID, chaincodeID, txPayload, timestamp, clientSig>

2 <TX-ENDORSED, peerID, txID, chaincodeID, readset, writeset>

3 BROADCAST(blob)

4 DELIVER(seqno,prevhash,block)

Total order semantics
(ordering service)

broadcast(endorsement)

© 2015 IBM Corporation

Hyperledger Fabric v1 Transaction flow

client (C)
endorsing
peer (EP1)

endorsing
peer (EP2)

endorsing
peer (EP3)

O
rd

erin
g service (co

n
sen

su
s)

orderers

Simulate/Execute tx
Sign TX-ENDORSED

Collect endorsement
(“sufficient” no. of

TX-ENDORSED Msgs)

1

2

4

3

1 <PROPOSE, clientID, chaincodeID, txPayload, timestamp, clientSig>

2 <TX-ENDORSED, peerID, txID, chaincodeID, readset, writeset>

3 BROADCAST(blob)

4 DELIVER(seqno,prevhash,block)

(committing)
peer (CP4)

(committing)
peer (CP5)

4

Total order semantics
(ordering service)

broadcast(endorsement)

© 2015 IBM Corporation

Hyperledger Fabric v1 Transaction flow

client (C)
endorsing
peer (EP1)

endorsing
peer (EP2)

endorsing
peer (EP3)

O
rd

erin
g service (co

n
sen

su
s)

orderers

Simulate/Execute tx
Sign TX-ENDORSED

Collect endorsement
(“sufficient” no. of

TX-ENDORSED Msgs)

1

2

4

3

1 <PROPOSE, clientID, chaincodeID, txPayload, timestamp, clientSig>

2 <TX-ENDORSED, peerID, txID, chaincodeID, readset, writeset>

3 BROADCAST(blob)

4 DELIVER(seqno,prevhash,block)

(committing)
peer (CP4)

(committing)
peer (CP5)

4

Total order semantics
(ordering service)

broadcast(endorsement)

© 2015 IBM Corporation

Hyperledger Fabric v1 Transaction flow

client (C)
endorsing
peer (EP1)

endorsing
peer (EP2)

endorsing
peer (EP3)

O
rd

erin
g service (co

n
sen

su
s)

orderers

Simulate/Execute tx
Sign TX-ENDORSED

1

2

4

3

1 <PROPOSE, clientID, chaincodeID, txPayload, timestamp, clientSig>

2 <TX-ENDORSED, peerID, txID, chaincodeID, readset, writeset>

3 BROADCAST(blob)

4 DELIVER(seqno,prevhash,block)

(committing)
peer (CP4)

(committing)
peer (CP5)

4

Validate(endorsement,
chaincodeID,
EP)

Validate(readset)
Commit tx

Validate(endorsement,
chaincodeID,
EP)

Validate(readset)
Commit tx

Total order semantics
(ordering service)

Sufficiently enough

to satisfy

Endorsement

Policy (EP)

Collect endorsement
(“sufficient” no. of

TX-ENDORSED Msgs)

Can validate (and execute) transactions in embarasingly parallel manner

© 2015 IBM Corporation

Near-term “Holy Grail” of blockchain scalability

Can we have a blockchain protocol

Scaling to hundreds of nodes

Sustaining VISA-like performance numbers?

(seconds latency, about 5k tps on average, few 10k tps peak throughput)

An even “Holier Grail”:

can we do this with some notion of

transaction confidentiality?

36

© 2015 IBM Corporation

Ultimate “Holy Grail” of blockchain scalability

Can we have a blockchain protocol

Scaling to hundred(s) of nodes on WANs

With network bounded throughput

And network/speed of light bounded latency?

An even “More ultimate Holier Grail”:

can we do this with some notion of

transaction confidentiality?

37

©2016 IBM Corporation

Thank You!

© 2015 IBM Corporation

Use of trusted hardware

 Known to, basically, reduce BFT consensus to CFT communication

patterns [Chun et al. SOSP’07, Kapitza et al, Eurosys 2012]

─ Still does not address all the scalability issues

 Started impacting PoW consensus (see Intel POET on SGX)

39

© 2015 IBM Corporation

Improving the performance of PoW blockchains

 GHOST (Greedy Heaviest-Observed Sub-Tree) rule [Sompolinsky2015]

─ resolves conflicts in by weighing the subtrees

─ More freedom in increasing the block frequency and the block size than the

longest chain rule

─ A variant was due to be implemented in the Ethereum blockchain

 Bitcoin-NG by Eyal et al. [NSDI2016]

─ uses standard PoW for leader election

─ leader can append microblocks to the chain, which are not subject to PoW

 Forks are still possible and consensus finality not ensured

40

© 2015 IBM Corporation

Hierarchical BFT

 Establish BFT agreement in smaller cliques

 Disseminate the result to other nodes following a hierarchy

 Stellar [Mazieres, 2016]

 SCP [Luu et al, 2016]

─ Also a hybrid PoW/BFT protocol, using PoW for identity management and

(parallel and hierarchical) BFT consensus for agreement

41

© 2015 IBM Corporation

XPaxos message pattern (common case)

42

client

leader

replica

replica

Paxos

client

leader

replica

replica

XPaxos

Digitally signed messages

Reconfiguration (leader election)
is more complex but its cost is amortized over time

