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What is a Blockchain?

• A chain (sequence, typically a hash chain) of blocks of transactions

- Each block consists of a number of (ordered) transactions

- Blockchain establishes total order of transactions
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Blockchain evolution (2009-present)
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2009
Bitcoin Blockchain 1.0

• A hard-coded cryptocurrency application 
w. limited stack-based scripting language

• Proof-of-work-consensus
• Native cryptocurrency (BTC)
• Permissionless blockchain system

2014
Ethereum

Blockchain 2.0

• Distributed applications (smart contracts) 
in a domain-specific language (Solidity)

• Proof-of-work-consensus (transition to Proof of Stake?)
• Native cryptocurrency (ETH)
• Permissionless blockchain system

2017
Hyperledger

Fabric
Blockchain 3.0

• Distributed applications (chaincodes) 
in different general-purpose languages 
(e.g., golang, Java, Node) 

• Modular/pluggable consensus
• No native cryptocurrency
• Multiple instances/deployments
• Permissioned blockchain system
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Main scalability bottlenecks

 Consensus/transaction ordering performance

 Sequential smart contract execution

 In the rest of the talk we will see challenges and how to address both
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Growing the chain

• How does the chain grow?

Most popular blockchain technique (used also in Bitcoin): 

Proof-of-Work (PoW)
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Growing Proof-of-Work (PoW)-based Blockchain

 Block “mining”:

─ Every participant (“miner”) tries to find nonces

─ such that the hash of the block h is lower than a 256-bit target

 Bitcoin

─ Target dynamically adjusted every 2016 blocks

─ 1 block generated roughly every 10 minutes

─ This currently requires roughly 280 expected hashes per block
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Forks

 If multiple miners mine the next block, consensus (on the next block) 

might be broken

PoW acts as an unreliable concurrency control mechanism – it may fail in this

 Hence, Bitcoin miners adopt a conflict resolution policy

─ They will temporarily store both 237A and 237B

─ A fork being extended longer (in fact with more work) eventually prevails
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Example (longest/most difficult chain wins)

8

#234… #235 #236

#237
A

#237
B

#238
B

#239
B



© 2015 IBM Corporation9

#234… #235 #236

#237
A

#237
B

#238
B

#239
B

Orphaned block

Example (longest/most difficult chain wins)



© 2015 IBM Corporation

Implications and the performance issues

PoW way of extending the ledger heavily and negatively impacts 

system scalability and overall throughput

 Bitcoin: With 1 block every 10 minutes and fixed block size of 1 MB
─ Peak throughput: only 6-7 tx/sec

─ Latency (of 6 block confirmations): about 1h

─ Enormous energy consumption!

 https://digiconomist.net/bitcoin-energy-consumption

─ 71 TWh/year  8GW of power

─ More than Switzerland, 0.32% of world electricity consumption

─ 987 kWh per transaction!

─ Average US household in 2016  897 kWh per month
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Better performance by tuning PoW parameters?

 Limited benefits, potentially weaker security

─ shorter block generation times (increasing block frequency)?

─ larger blocks?

─ Different conflict resolution rules?

 From Gervais et al. CCS’16 paper https://eprint.iacr.org/2016/555

 Bitcoin 6 blocks (1hour) ~ Ethereum 37 blocks (9-10 minutes)

 PoW blockchains can attain up to 60 tps with Bitcoin-like probability of 

stale blocks
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Boosting consensus: Enter Proof of Stake (PoS)

 PoS usually sits on top of PoW tree datastructure

 Allows nodes with more stake/weight to form blocks more often 

effectively lowering the difficulty

 “Nothing at stake” problem?

 Centralization?
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PoS “Nothing-at-Stake” Forks

 PoS breaks ties selecting forks (branches) with more stake on them 

 Very susceptible to ”double-spend” attacks in absence of penalties

 Example with 3% of stake double spending
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Casper – Friendly Finality Gadget

 Buterin/Griffith

─ https://arxiv.org/abs/1710.09437

 Leverages BFT techniques to limit the effects of forks and to address 

nothing at stake problem

─ Byzantine Fault Tolerant (BFT) agreement to settle on a single block and 

penalize equivocating nodes

 Relies on node synchrony as well

 Announced as early as in 2015, still being figured out…

Wait but what is this BFT?
14
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Enter State machine replication (SMR)

 [Lamport 78], countless follow-up papers

 Classical Distributed Computing problem

─ An illusion of a centralized system that never fails

─ Despite machine faults and (temporary) network partitions

What machine faults?

 Crash faults (CFT): A machine simply stops execution and halts

─ Paxos, RAFT, Zookeeper AB,…

 Non-crash (a.k.a. Byzantine) faults (BFT)

─ A model that blockchains adopt
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BFT Consensus (example of PBFT [TOCS2002], implemented in Hyperledger 

Fabric v0.6)
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BFT in Blockchains

 BFT is known as a technology that matters for permissioned 

blockchains

 But with PoS BFT importance extends to permissionless blockchains 

as well

 Much better performance (throughput/latency) compared to PoW

─ Drawback: more intensive on network communication
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PoW vs. BFT for Blockchain (simplified overview)
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Proof of Work (Bitcoin, Ethereum,...) BFT state machine replication (Ripple, Stellar, Fabric,…)

Membership 

type

Permisionless Permissioned

User IDs

(Sybil attack)

Decentralized, Anonymous

(Decentralized protection by PoW

compute/hash power)

Centralized, all Nodes know all other Nodes (Centralized 

identity management or stake protect against Sybil attacks)

Scalability

(no. of Nodes)

Excellent, >100k Nodes Verified up to few tens (or so) Nodes

Can scale to 100 nodes with certain performance 

degradation

(scalability limits not well explored)

Scalability

(no. of Clients)

Excellent Excellent

Latency Poor, up to 1h (Bitcoin)

From 9-10 mins (Ethereum)

Depends on the implementation/deployment (order of ms)

Peak 

Throughput

from 7 tx/sec (Bitcoin) >10k tx/sec with existing implem. in software [<20…100 

nodes]

Power 

efficiency

>8 GW (Bitcoin) Good (commodity hardware)

Temporary 

forks in 

blockchain

Possible (leads to double-spending 

attacks)

Not possible

Open research problem:
Given the use case, network, no. of nodes

What is the most suitable and scalable Blockchain technology/protocol?
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Marko Vukolić.The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT Replication
Proceedings of the 2015 International workshop on open problems in network security (iNetSec 2015).
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Optimistic protocols (a bit of our own work)

 Abortable state machine replication [Aublin et al, TOCS 2015]

─ Can run O(n) BFT protocol of a basically arbitrary communication pattern 

including (a very load-balanced one) in the optimistic case

─ Backed by any BFT protocol (e.g., PBFT) to cover the worst case without 

redesigning the entire protocol/system
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Revisiting the assumptions (still our own work)

 XFT [Liu et al., OSDI 2016]    http://arxiv.org/abs/1502.05831

 BFT assumes powerful adversary 

─ controlling the network among correct nodes

─ and f Byzantine nodes out of 3f+1 nodes

─ Simultaneous control over network and Byzantine nodes may be difficult to 

pull out in the blockchain setting

 XFT: at most f of partitioned nodes and Byzantine nodes at any time

─ Have the cost of CFT consensus without trusted hardware

 XPaxos as the primer for such XFT protocols
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SMR model CFT XFT BFT

Number of Nodes 2f+1 2f+1 3f+1

Tolerating Byzantine Nodes no yes yes

Performance Good Practically as good as CFT Poor (compared to CFT)

http://arxiv.org/abs/1502.05831
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Putting SMR consensus in modern hardware

 Has been shown to dramatically increase performance of consensus

─ But so far with CFT only

 RDMA-based protocols 

─ FaRM [Dragojevic et al, NSDI’14], 

─ DARE [Poke/Hoeffler, HPDC’15]

 FPGAs [Istvan et al., NSDI’16]

─ 3 node Zookeper atomic broadcast (ZAB) up to 2.5 million tps*

*CFT, excluding crypto overhead and application execution

Node scalability is still an unknown and BFT still to be implemented 

22



© 2015 IBM Corporation

Main scalability bottlenecks

 Consensus/transaction ordering performance

 Sequential smart contract execution

23
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Introducing smart contracts/chaincode

Modern crypto ledgers (e.g., Ethereum, Hyperledger) 

aim at supporting “smart contracts” or “chaincodes”

A smart contract is an event driven program, with state, which runs on a 

replicated, shared ledger and which can take custody over assets on that 

ledger. [Swanson2015]

“Smart contract”  (replicated) state machine
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PoW with smart-contracts

• PoW Consensus 

• Block “mining” 

• Block #237 propagation to the network

(gossip)

• Block Validation / Smart Contract Execution (every miner)

• Executing transactions in the payload

• Verifying hash of Block #237 < DIFFICULTY
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BFT Consensus (example of PBFT [TOCS2002], implemented in Hyperledger 

Fabric v0.6)
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Almost all blockchains follow order-execute 
architecture

 Order transactions using (PoW/BFT) consensus

 Execute transactions sequentially at each node (miner)

This approach works only when state-machine 

and transactions are deterministic
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Order-Execute main design challenges

 Enforcing determinism

─ What happens if you code smart-contracts in general purpose programming 

language (Go, Java)?

• Potential non-determinism!!!

─ Ethereum 

• Solidity domain specific language

• Compiled to Ethereum VM stack-based bytecode

 Infinite loop “application”? Long executing application?

─ Sequential execution

─ Gas, paying for every step of execution (computation)

─ Systemic dependency on native cryptocurrency (Ether)
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Scaling blockchain execution through parallelization

 BlockDAG [Lewenberger et al., FC2015]

 Parallel execution in BFT consensus [Kapritsos et al.,OSDI2012] 

─ A variant of which is implemented in Hyperledger Fabric v1 (as we will see)

 And classical database sharding/partitioning

─ Implemented in Hyperledger Fabric through concept of channels

─ Targeted by Ethereum and other blockchains
29
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Hyperledger Fabric v1

 Androulaki et al. Hyperledger Fabric: a distributed operating system 

for permissioned blockchains, Eurosys 2018

─ https://dl.acm.org/citation.cfm?id=3190538

─ Open source project (Apache 2.0), with strong push from IBM

 Main features

─ Parallel execution

─ Can code smart-contracts in general-purpose languages

─ Modular consensus (decoupled from execution, plug in the best available)

─ No native cryptocurrency (can have one as yet another application)

 Current performance with Fabric v1.1 Bitcoin-like workload 

(Fabcoin)

─ 3500 tps with 100 nodes on WANs with commodity cloud hardware

─ Simple optimizations pending to get to 10000 tps
30

https://dl.acm.org/citation.cfm?id=3190538
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Existing blockchains’ architecture

input tx tx against smart contracts

Hyperledger Fabric v1 architecture

EXECUTE  ORDER  VALIDATE

Hyperledger Fabric v1 architecture in one slide
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Application consists of two components:
1) Chaincode (execution code)
2) Endorsement policy (validation code)
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Hyperledger Fabric v1 Transaction flow
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Hyperledger Fabric v1 Transaction flow
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Hyperledger Fabric v1 Transaction flow
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Hyperledger Fabric v1 Transaction flow
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Can validate (and execute) transactions in embarasingly parallel manner
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Near-term “Holy Grail” of blockchain scalability

Can we have a blockchain protocol 

Scaling to hundreds of nodes

Sustaining VISA-like performance numbers?

(seconds latency, about 5k tps on average, few 10k tps peak throughput)

An even “Holier Grail”:

can we do this with some notion of 

transaction confidentiality?
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Ultimate “Holy Grail” of blockchain scalability

Can we have a blockchain protocol 

Scaling to hundred(s) of nodes on WANs

With network bounded throughput

And network/speed of light bounded latency?

An even “More ultimate Holier Grail”:

can we do this with some notion of 

transaction confidentiality?

37
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Thank You!
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Use of trusted hardware

 Known to, basically, reduce BFT consensus  to CFT communication 

patterns [Chun et al. SOSP’07, Kapitza et al, Eurosys 2012]

─ Still does not address all the scalability issues

 Started impacting PoW consensus (see Intel POET on SGX)
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Improving the performance of PoW blockchains

 GHOST (Greedy Heaviest-Observed Sub-Tree) rule [Sompolinsky2015]

─ resolves conflicts in by weighing the subtrees 

─ More freedom in increasing the block frequency and the block size than the 

longest chain rule

─ A variant was due to be implemented in the Ethereum blockchain 

 Bitcoin-NG by Eyal et al. [NSDI2016] 

─ uses standard PoW for leader election

─ leader can append microblocks to the chain, which are not subject to PoW

 Forks are still possible and consensus finality not ensured
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Hierarchical BFT

 Establish BFT agreement in smaller cliques 

 Disseminate the result to other nodes following a hierarchy

 Stellar [Mazieres, 2016]

 SCP [Luu et al, 2016]

─ Also a hybrid PoW/BFT protocol, using PoW for identity management and 

(parallel and hierarchical) BFT consensus for agreement
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XPaxos message pattern (common case)
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Digitally signed messages 

Reconfiguration (leader election) 
is more complex but its cost is amortized over time


